About 96,600 results
Open links in new tab
  1. 一文了解Transformer全貌(图解Transformer)

    Sep 26, 2025 · 网上有关Transformer原理的介绍很多,在本文中我们将尽量模型简化,让普通读者也能轻松理解。 1. Transformer整体结构 在机器翻译中,Transformer可以将一种语言翻译成 …

  2. 如何最简单、通俗地理解Transformer? - 知乎

    Transformer最开始应用于NLP领域的机器翻译任务,但是它的通用性很好,除了NLP领域的其他任务,经过变体,还可以用于视觉领域,如ViT(Vision Transformer)。 这些特点 …

  3. 如何从浅入深理解 Transformer? - 知乎

    Transformer升级之路:12、无限外推的ReRoPE? Transformer升级之路:13、逆用Leaky ReRoPE Transformer升级之路:14、当HWFA遇见ReRoPE 预训练一下,Transformer的长序 …

  4. Transformer两大变种:GPT和BERT的差别(易懂版)-2更

    Jul 16, 2025 · Transformer是GPT和BERT的前身。谷歌和OpenAI在自然语言处理技术上的优化,都是基于这个模型。 更多关于的Transformer可以看文章: ChatGPT与Transformer(无公 …

  5. 挑战 Transformer:全新架构 Mamba 详解

    Sep 23, 2025 · 而就在最近,一名为 Mamba 的架构似乎打破了这一局面。 与类似规模的 Transformer 相比, Mamba 具有 5 倍的吞吐量, 而且 Mamba-3B 的效果与两倍于其规模的 …

  6. MoE和transformer有什么区别和联系? - 知乎

    01. Transformer:像“万能翻译官”的神经网络 Transformer 是当今AI大模型(如ChatGPT)的核心架构,最初用于机器翻译,核心是自注意力机制(Self-Attention),能同时分析句子中所有词 …

  7. 如何理解 Swin Transformer 和 Vision Transformer不同 ... - 知乎

    Swin Transformer 的总体结构 Swin Transformer 总体结构 从上图我们可以观察到在输入端有一个 Patch Partition 的操作,也就是 Vision Transformer 常规的切图。 然后是经过一个线性映射进 …

  8. Transformer模型怎么用于regression的问题? - 知乎

    回归问题概述 Transformer模型基础 回归问题中的Transformer架构调整 应用案例 优化与技巧 挑战与改进 1. 回归问题概述 回归问题是监督学习中的一种任务,目标是预测一个连续值。这类问 …

  9. 你对下一代Transformer架构的预测是什么? - 知乎

    2. 引入随机化(Randomized Transformer) Transformer巨大的规模使得不管训练还是推理都极具挑战。 然而,很少有人知道的是,引入随机化矩阵算法可以减少Transformer需要的FLOPs。 …

  10. 有没有比较详细通俗易懂的 Transformer 教程? - 知乎

    Transformer目前没有官方中文译名,暂时就叫Transformer吧。 在该论文中,作者主要将Transformer用于机器翻译 [2] 任务,后来研究者们发现Transformer在自然语言处理的很多任 …