About 510,000 results
Open links in new tab
  1. How should outliers be dealt with in linear regression analysis ...

    What statistical tests or rules of thumb can be used as a basis for excluding outliers in linear regression analysis? Are there any special considerations for multilinear regression?

  2. regression - When is R squared negative? - Cross Validated

    Also, for OLS regression, R^2 is the squared correlation between the predicted and the observed values. Hence, it must be non-negative. For simple OLS regression with one predictor, this is …

  3. regression - Trying to understand the fitted vs residual plot?

    Dec 23, 2016 · A good residual vs fitted plot has three characteristics: The residuals "bounce randomly" around the 0 line. This suggests that the assumption that the relationship is linear is …

  4. Multivariable vs multivariate regression - Cross Validated

    Feb 2, 2020 · One outcome, one explanatory variable, often used as the introductory example in a first course on regression models. multivariate multivariable regression. Multiple outcomes, …

  5. Support Vector Regression vs. Linear Regression - Cross Validated

    Dec 5, 2023 · Linear regression can use the same kernels used in SVR, and SVR can also use the linear kernel. Given only the coefficients from such models, it would be impossible to …

  6. Explain the difference between multiple regression and …

    There ain’t no difference between multiple regression and multivariate regression in that, they both constitute a system with 2 or more independent variables and 1 or more dependent …

  7. regression - How exactly does one “control for other variables ...

    Residuals I assume that you have a basic understanding of the concept of residuals in regression analysis. Here is the Wikipedia explanation: " If one runs a regression on some data, then the …

  8. When conducting multiple regression, when should you center …

    Jun 5, 2012 · In some literature, I have read that a regression with multiple explanatory variables, if in different units, needed to be standardized. (Standardizing consists in subtracting the mean …

  9. Back-transformation of regression coefficients - Cross Validated

    Apr 25, 2012 · I'm doing a linear regression with a transformed dependent variable. The following transformation was done so that the assumption of normality of residuals would hold. The …

  10. Minimal number of points for a linear regression

    Feb 10, 2023 · 25 What would be a "reasonable" minimal number of observations to look for a trend over time with a linear regression? what about fitting a quadratic model? I work with …